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ABSTRACT 

PERIODIC MOTIONS AND STABILITY ANALYSIS OF A NON-LINEAR 

ROTATING BEAM SUBJECTED TO TORSIONAL EXCITATION 

by 

YUHUI QU 

Chairperson: Professor Fengxia Wang 

The periodic motions and stability of a nonlinear rotating beam subjected to a torsional 

excitation is investigated in this thesis. Both quadratic and cubic geometric stiffening 

nonlinearities are retained in the equation of motion, and the reduced model is obtained via 

the Galerkin method. Saddle-node bifurcations and Hopf bifurcations of the Period-1 

motions of the model were obtained via the high order harmonic balance method. The 

period-2 and period-4 solutions, which are emanated from the period-1 and period-2 

motions, respectively, are obtained by the combined implementation of the harmonic 

balance method, Floquet theory, and Discrete Fourier Transform (DFT). Stabilities are 

detected by Floquet theory. Stable and unstable periodic motions are illustrated from 

numerical and analytical solutions.  The analytical periodic solutions and their stabilities 

are verified through numerical simulation. 

 

 

 

 



www.manaraa.com

 

iii 

 

ACKNOWLEDGEMENTS 

I would like to express my heartfelt gratitude to my graduate advisor, Dr. Fengxia 

Wang, without whom none of the work presented in this thesis would have been 

accomplished. I want to thank her for her humility, patience and guidance throughout this 

research. I am also grateful for her financial support for my study. It was a great pleasure 

working for her. 

I want to especially thank all the other members of my thesis advisory committee, Dr. 

Keqin Gu and Dr. Soondo Kweon who have been always supportive and ready to help 

whenever necessary.  

I am grateful to Professor Dr. Ryan Fried in Department of Civil Engineering for his 

financial support and help. Also I wish to express my appreciation to all the faculty and 

staff at Southern Illinois University for all the cooperative efforts during my study. 

I would also like to acknowledge the support from the members in our lab, who have 

created a peaceful and joyful environment for me to work in. I feel so honored to have 

them in graduate studies. I also would like to express my appreciation to all my friends for 

their help on my research and daily life. 

Sincerely, I thank my parents for their love, encouragement, enthusiasm and support.   

 

 

 

Equation Chapter (Next) Section 1 

  



www.manaraa.com

 

iv 

 

TABLE OF CONTENTS 

ABSTRACT ........................................................................................................................ ii 

ACKNOWLEDGEMENTS ............................................................................................... iii 

LIST OF FIGURES .............................................................................................................v 

LIST OF TABLES ............................................................................................................ vii 

CHAPTER 

I. INTRODUCTION ...................................................................................................1 

Literature Survey ........................................................................................................................ 1 

Thesis Objectives ....................................................................................................................... 3 

Thesis Layout .............................................................................................................................. 5 

II. EQUATION OF MOTION ......................................................................................6 

Mechanical Model...................................................................................................................... 6 

Kinetic Energy ............................................................................................................................ 7 

Strain Energy ............................................................................................................................... 8 

Equation of Motion .................................................................................................................... 9 

III. PERIODIC SOLUTIONS ......................................................................................12 

Disadvantage and Advantage of Other Methods............................................................. 12 

Harmonic Balance Method Combined with Discrete Fourier Transform ................ 13 

Analytical Periodic Solutions ............................................................................................... 14 

Stability of Periodic Solutions .............................................................................................. 15 

Bifurcation of Periodic Solutions ........................................................................................ 18 

IV. COMPARISION OF NUMERICAL AND ANALYTICAL SOLUTIONS .........49 

V. CONCLUSION ......................................................................................................66 

REFERENCES ..................................................................................................................68 

 

  



www.manaraa.com

 

v 

 

LIST OF FIGURES 

Figure                                                                                                                             Page 

1. Deformed Configuration of a Flexible Body ........................................................7 

2. Three Ways of Losing Stability ..........................................................................15 

3. The High Order Harmonic Balance, Floquet Theory, and Discrete Fourier 

Transform Implementation Flow Chart ........................................................ 17 

4. Constant Term’s Amplitude 
0,1A  of the Bending Mode .....................................24 

5. Constant Term’s Amplitude 
0,2A  of the Axial Mode for the Lower Branch ......27 

6. Constant Term’s Amplitude 
0,2A  of the Axial Mode for the Upper Branch .......30 

7. Fraction Term’s Amplitude for the Bending and Axial Modes ..........................33 

8. First Harmonic Term’s Amplitude 
1,1A  of the Bending Mode for the Lower        

Branch ........................................................................................................... 35 

9. First Harmonic Term’s Amplitude 
1,1A  of the Bending Mode for the Upper        

Branch ........................................................................................................... 37 

10. First Harmonic Term’s Amplitude 
1,2A  of the Axial Mode for the Lower        

Branch ........................................................................................................... 39 

11. First Harmonic Term’s Amplitude 
1,2A  of the Axial Mode for the Upper        

Branch ........................................................................................................... 41 

12. First Harmonic Term’s Phase 1,1  of the Bending Mode ...................................45 

13. First Harmonic Term’s Phase 1,2  of the Axial Mode .......................................48 

14. Comparison of Analytical and Numerical Solutions of the Stable Period-1 

Motion from Upper Branch at 0.87  ...................................................... 51 

15. Comparison of Analytical and Numerical Solutions of the Stable Period-1  

Motion from Lower Branch at 0.87  ...................................................... 53 

16. Comparison of Analytical and Numerical Solutions of the Unstable Period-1  

Motion from Upper Branch at 0.87  ...................................................... 55 

17. Comparison of Analytical and Numerical Solutions of the Unstable Period-1  

Motion from Upper Branch at 0.87  ...................................................... 57 



www.manaraa.com

 

vi 

 

LIST OF FIGURES 

18. Comparison of Analytical and Numerical Solutions of the Stable Period-2    

Motion at 0.9537  ................................................................................... 59 

19. Comparison of Analytical and Numerical Solutions of the Stable Period-2  

     Motion at 0.835  ......................................................................................61 

20. Comparison of Analytical and Numerical Solutions of the Unstable Period-2   

     Motion at 0.7164  ....................................................................................65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

vii 

 

LIST OF TABLES 

Table                                                                                                                             Page 

1. Bifurcation Scenario ...........................................................................................21 

 

 

 

 

 

 

 

  



www.manaraa.com

 

 

CHAPTER I 

 INTRODUCTION 

Literature Survey  

The vibration problem of rotating beams has been extensively studied by researchers in both 

aerospace and mechanical engineering due to its important applications such as helicopter, 

turbine blades, and appendages of spinning satellites.  

The study of vibrations of rotating beams can be traced back to the work of Schilhansil in 

1958. In his research, the partial differential equation was obtained by assuming steady state 

revolution and the geometric stiffening was approximated by the centrifugal force. Similarly, 

Hurty and Rubistein(1964) accounted for the geometric stiffening effect in the studying of the 

dynamics of a beam vibration by considering only the axial component of the centrifugal force. 

The linear partial differential equation for flexural vibration based on linearization of nonlinear 

equations of motion was attained by Anderson (1975). Kane, Ryan, and Banerjee (1987) derived 

the strain energy of a rotating beam, in which the nonlinear strain-displacement relation is 

implicitly included, though it is not apparent due to the choice of independent variables. Simo 

and Vu-Quoc (1987) studied numerical stability issues of a rotating beam, and pointed out the 

importance of considering nonlinear geometric stiffening effects in the stability analysis. Sharf 

(1995) studied the nonlinear expression of the internal force based on nonlinear kinematics. He 

then derived the quadratic and cubic geometric nonlinear stiffness matrices of Euler-Bernoulli 

beams (1996-1999). To solve this problem, various analytical and numerical methods such as 

Rayleigh-Ritz method, Galerkin’s method (1998), and finite element method (1997-1999) have 
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been employed and compared to obtain successive results. 

The dynamical behavior of the linear model of a rotating blade, in which the geometric 

stiffening effect is approximated by an effective load, is governed by a set of Mathieu–Hill 

equations. Turhan and Bulut (2005) studied the stability of the linear model of a rotating beam 

with one single bending mode through a monodromy matrix method and the so called 

generalized Bolotin method (2003).  

While the linear stability analysis of a rotating beam can provide precise stable and unstable 

regions in terms of system parameters, these stability results only give a rough outline for 

vibration testing due to the neglect of nonlinear effect in the model. Once the system 

parameters go beyond the linear stability region, the effects of nonlinearities will emerge, and 

the linear model will no longer be satisfied. Therefore the nonlinear vibrations of a rotating 

shaft have drawn large amount of research attention since the 1970s. Carnegie et.al (1970) 

found that large amplitudes of the second harmonic occur at frequencies less than the natural 

frequency of a uniform untwisted rotating cantilever blade. This shows that nonlinearities play 

an important role as the speed of rotation become large. In the work of Friedmann et.al (1989), 

a finite-element model was built from Hamilton's principle and the geometrically nonlinear 

behavior was considered based upon the moderate deflection theory. Turhan et.al (2008) 

obtained the one degree and two degree nonlinear model of a rotating beam based on the 

Galerkin method and analyzed the amplitude frequency response via the perturbation method. 

Similarly, Zhang et.al (2012) studied a thin-walled rotating beam via the multiple time scale 

perturbation method. The average equations are obtained for the 1:1 internal resonance and 

primary resonance cases, and then the numerical simulations are applied to the average 

equations to illustrate the existence of periodic motions and chaotic motions. Shahgholi et.al 

http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7bCARNEGIE+W%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7bFriedmann%2C+P.P.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
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(2011) studied the effect of the eccentricity and external damping of an in-extensional spinning 

shaft, and the amplitude responses of periodic solutions are obtained by the harmonic balance 

method. Wang and Luo (2012-2013) studied stabilities of the period-1 motions of a rotating 

blade with the “geometric stiffening” nonlinearities via the generalized harmonic balance 

method (2012). Both Saddle-node bifurcations and Hopf bifurcations are observed in the 

period-1 motion of a rotating blade.  

Thesis Objectives 

From available nonlinear rotating shaft literature, we can see that most researchers focus 

on either modeling, or seeking steady state solutions, or both.  

Two modeling approaches are primarily employed: one is Hamilton’s principle with the 

Galerkin method and the other is the finite element method.  The perturbation method or the 

harmonic balance method is typically applied to obtain the stability and bifurcations of steady 

state solutions. Whether our study subject is a turbine blade or an appendage of spinning 

satellites, one important goal of the study is to better understand structure failure, especially 

failure caused by fatigue.  

Considering that the vibration frequency plays a significant role in stress intensity, crack 

propagation rate, and the final number of fatigue cycles to fracture (1995), besides the 

amplitudes, the steady state solution’s frequency variations are also very important. The steady 

state solutions’ frequency won’t always follow the external excitation frequency. For example, 

as system parameters change, period-1 solution may lose stability and a stable period-2 
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solution may occur. In real experiments, the presence of the stable period-2 motion will lead 

to a sudden change of the vibration frequency, and hence will affect the structure failure factors.      

In this thesis, we focus on the seeking of the period-2 and period-4 motions which are 

generated through Hopf bifurcations via the higher order harmonic balance method. Higher 

order harmonic balance methods have attracted lots of interests from nonlinear dynamics 

community over the past three decades. The basic theory of harmonic balance method is to 

transform the nonlinear dynamics problem into a set of nonlinear algebraic equations by 

truncated Fourier series (1979, 1996). To obtain an accurate enough solution for complicated 

nonlinear problems especially for the accurate prediction of bifurcations, one usually resorts 

to high order harmonic balance method. Various approaches for the implementation of the 

harmonic balance method have been proposed, including harmonic balance combined with 

Newton Raphson method (1981), incremental harmonic balance (1981-1983), time/frequency 

domain alternative harmonic balance (1989), and the generalized hamornic balance method—

a combination of temporal variation with traditional harmonic balance method (2012-2013). 

In electrical circuit and control area, the harmonic balance method together with the Hopf 

bifurcation theory has also been widely used to predict the periodic solutions (1979, 1993, and 

2002). 

To improve the computation efficiency and successfully capture the period-2 solution 

generated by the Hopf bifurcations of period-1 solutions, in this work, higher order harmonic 

balance method, Floquet theory, and Discrete Fourier Transform are combined to be applied to 

the fluctuation rotating beam. Unlike the time/frequency domain alternative harmonic balance 

method(1989), in which iterations of Discrete Fourier Transform are performed in order to 

obtain one steady state solution, in our work to reduce the computation cost, the DFT is only 
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employed at Hopf bifurcation point to predict the initial guess of the new generated period-2 

solutions. 

Thesis Layout 

This thesis consists of six chapters. Chapter I will give a literature survey on the 

investigations of the vibration of rotating beams. The thesis objectives and layout will also be 

presented. In Chapter II, the mechanical model of a nonlinear rotating blade subjected to a 

torsional excitation will be presented.  The kinetic energy and strain energy of the system will 

be analyzed and the equations of motion will be derived. In Chapter III, the analytical solutions 

and their stability of periodic motions will be obtained via the high order harmonic balance 

method. The Saddle-node bifurcations and the Hopf bifurcations of the periodic solutions will 

be identified. Based on Hopf bifurcation theory, period-2 solutions, which are emanated from 

the period-1 solutions at the Hopf bifurcation points, will be captured. The stability of the 

generated period-2 and period-4 solutions will be evaluated via the Multiplier frequency 

method. The analytical predictions and the stability of the period-1, period-2, and period-4 

motions will be verified by the numerical simulations in Chapter IV. Chapter V will summarize 

the results accomplished in this thesis. 

Equation Section (Next) 
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CHAPTER II 

EQUATION OF MOTION 

In this chapter, the mechanical model of a nonlinear rotating beam subjected of torsional 

excitation will be illustrated. The kinetic energy and strain energy of the rotating beam will be 

analyzed and finally the equation of motion will be derived. 

Mechanical Model 

Consider an arbitrary flexible beam as shown in Fig.1. A moving frame “ oxyz ” is attached 

to the rigid non-deformed body which is rotating and the fixed frame “OXYZ ” is the inertial 

frame. Coordinate x  and y locates the position of an arbitrary point p  of the non-deformed 

beam in the moving frame, and the axial and transverse deformation displacements of the 

arbitrary point p  are pu  and pv . Similarly, u  and v represent the axial and transverse 

deformation displacements of a point on the neutral axis corresponding to the point p  in the 

moving frame, hence we have, 

 sin ,pu u y     (2.1)

 (1 cos ).pv v y      (2.2) 

  From the Euler-Bernoulli theory, the location and deformation vectors 
r

pt and 
r

pu of point p are 

 
T[ , ,0]  ,r

p x yt   (2.3) 

 
T[ sin , (1 cos ),0] .r

p u y v y   u     (2.4) 
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With the assumption ' 1v   and ' 1u  , 2' ( ' )v o v    where /v v x    is the first order 

approximation of arctan[ '/ (1 ')]v u  . 

 

pv
 

Y  

X  

x  

z  

Z  

o 

O 

v
 

u
 

pu
 

y
 


 

y
 


 

r

pt
 

 

Fig. 1 Deformed configuration of a flexible body. 

Kinetic Energy 

   The kinetic energy of an arbitrary small mass in the beam can be represented in either inertial 

frame or the moving frame. The location vector
r

pt  does not change with time, i.e., . Thus, the 

velocity vector at point p  is
r

p t 0  

 ( )r r r

p p p   v u ω t u   (2.5) 

where /r r

p pd dtu u  and the rotation velocity is 

 
T[0,0, ]ω    (2.6) 
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where the 
t






 .  

Thus, the total kinetic energy of a planar slender beam is 

 
1

.
2 V

T dV  v v   (2.7) 

Substitution of Eqs.(2.1) - (2.6) into Eq.(2.7) yields the total kinetic energy of a rotating beam, 

i.e.,  

 

2 2 2 2 2

0

2 2

1
{ [ 2 ( ( ) ) (( ) )]

2

[ 2 ]}

L

T A u v v u x uv u x v

J v v dx

       

   

   

  

  (2.8) 

where 
u

u
t





, 
v

v
t




. 

In Eq.(2.8), L is the total length of the beam, A is the cross section area of the beam, and J 

is the moment of inertia of cross section. Since the effect of rotary inertia is small in thin beam, 

the J  term in Eq.(2.8) will be dropped.  

Strain Energy 

For a two-dimensional Euler-Bernoulli beam, the shear strain is very small, which can be 

ignored. Neglecting the effect of shear deformation, the nonlinear normal strain can be 

expressed as  

 
21

( ) .
2

p p

x

u v

x x

 
 
 

   (2.9) 

Substitution Eqs.(2.1) - (2.2) to Eq.(2.9), we can obtain 
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 21
'cos ( y 'sin ) .

2
x

u v
y

x x

 
   
 

       (2.10) 

The strain energy of a planar slender beam is 

 2 21
( ) ,

2
x xy

V
U E G dV      (2.11) 

where E  and G  are Young’s modulus and shear modulus, respectively. As mentioned 

above, for a two-dimensional Euler-Bernoulli beam, the shear strain can be ignores. Without 

the shear strain energy, substitution of Eq.(2.10) to Eq.(2.11), the strain energy of the two-

dimensional Euler-Bernoulli beam is approximated as 

 2 2 4 2

0 0

1 1 1
( )

2 4 2

L L

U EA u u v v dx EJ v dx          . (2.12) 

Equation of Motion 

   Consider the transverse and longitudinal displacements to be expressed by the Galekin series, 

 
1

( , ) ( ) ( ),
n

uj uj

j

u x t x q t


   (2.13) 

 
1

( , ) ( ) ( ),
n

vj vj

j

v x t x q t


   (2.14) 

where ( )uj x and ( )vj x are bending modes and longitudinal modes of a cantilever beam for the 

fixed-free boundaries as 

 
1( ) sin( ),uj ujx x    (2.15) 

 
1 1 1 1( ) cosh( ) cos( ) [sinh( ) sin( )],vj vj vj vj vj vjx x x x x           (2.16) 
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where
1 /x x L , and the parameters (

vj , 
vj , 

uj ) are obtained from characteristic equations 

of a cantilever beam. These modes are based on the linear cantilever beam with the fixed-free 

boundary conditions, i.e., 

 (0, ) 0u t    (2.17) 

 ( , ) 0u l t    (2.18) 

 (0, ) (0, t) 0v t v    (2.19) 

 '''( , ) '''( , ) 0v l t v l t    (2.20) 

Without loss of generality, one transverse mode and one longitudinal mode plus viscous 

damping are considered.  For simplicity, we can consider a fluctuating rotation speed in the 

form of  

 
0 1 sin( ).t      (2.21) 

Substitution of Eqs.(2.13) - (2.21) into the total energy equation and application of Hamilton’s 

principle produces non-dimensional differential equation 

 
1 1 1

1 2

2 2 2

( , ) ,
q q q

q q
q q q

     
        

     
C K N f   (2.22) 

where damping and stiffness matrices are 

 
1 0 1

0 1 2

2 ( sin )
,

2 ( sin )

t

t

  
  

   
C

   

   
  (2.23) 

 

2 2

1 0 1

2 2

1 2 0 1

( sin ) cos
.

cos ( sin )

t t

t t


      

  
      

K
  

  
  (2.24) 

and nonlinear term and force vectors are 



www.manaraa.com

11 

 

 

 

3

1 1 2 3 1

1 2 2

2 1

( , ) ,
q q q

q q
q

 
  
 

N
 


  (2.25) 

 
2

0 1

( cos )
.

( sin )

v

u

t

t

  
  

  
f

 

  
  (2.26) 

The other terms in the equations above are 

 2

1 1 4
,v

EJ

AL
 


  (2.27) 

 
2 2

1
2 2

1

,u

v

AL

J






  (2.28) 

 
1

1 1 1
0

,v u dx      (2.29) 

 
1

1 1 1
0

,v vL x dx      (2.30) 

 
1

1 1 1
0

,u uL x dx     (2.31) 

 
2

1
2

1 1 1 14 0
1

( ) ,v u

v

AL
dx

J
    


  (2.32) 

 
2

1
2

2 1 1 14 0
1

( ) ,
2

v u

v

AL
dx

J
    


  (2.33) 

 
1

4

3 1 14 0
1

( ) ,
2

v

v

AL
dx

J
  


  (2.34)

where dot denotes the derivative with respect to t . 1 , 2 are the viscous damping coefficients. 

Stability analysis of the nonlinear equations with quadratic term kept in the axial direction 

equation and cubic term kept in the transverse direction equation will be studied. 

Equation Section 3 
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CHAPTER III 

PERIODIC SOLUTIONS 

In this chapter, the analytical solutions and their stability of periodic motions will be 

obtained via the high order harmonic balance method. The Saddle-node bifurcations and the 

Hopf bifurcations of the periodic solutions will be identified. Based on Hopf bifurcation theory 

period-2 solutions, which are emanated from the period-1 solutions at the Hopf bifurcation 

points, will be captured. The stability of the generated period-2 and period-4 solutions will be 

evaluated via the Multiplier frequency method. 

Disadvantage and Advantage of Other Methods 

Among various version of higher order harmonic balance method, incremental harmonic 

balance and generalized harmonic balance are widely used to calculate parametric stability 

boundary for nonlinear systems.  

As a combined application of variation, incremental harmonic balance steps from a known 

state of vibration to a neighboring state with an incremental change in one of the governing 

parameters of the system. Incremental harmonic balance can provide parametric stability 

boundary for linear system and the parametric stability region of a periodic solution for 

nonlinear systems. However, the incremental harmonic balance is computationally expensive.   

The generalized harmonic balance method allows the Fourier series coefficients vary slowly 

with time. The stabilities and bifurcation types of periodic solutions can be evaluated through 

the eigenvalues of the time variant coefficients of every harmonic term. The generalized 
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harmonic balance method can efficiently trace the parametric stability boundary for both linear 

system and a periodic solution of a nonlinear system with good accuracy. From the convergence 

study of the generalized harmonic balance method, the stabilities and bifurcations are more 

sensitive to the number of harmonic terms finally retained in the analytical solution compared 

to the amplitudes of periodic solutions. The amplitude always converges much faster than the 

stability, which is determined by the eigenvalues of the temporal equations of each harmonic 

term’s coefficient. For example, for the two degree of freedom strong nonlinear system 

described by Eq.(2.22), 8 harmonic terms will provide a fundamental resonance periodic 

solution with precision up to 1e-6. However, the periodic motion’s stability obtained by the 

generalized harmonic balance method won’t converge even with 24 harmonic terms when the 

solution is close to the bifurcation point.  

Harmonic Balance Method Combined with Discrete Fourier Transform 

To circumvent this disadvantage of the generalized harmonic balance method, reduce the 

number of harmonic terms, and yet with accurate estimation of both amplitude and stability, the 

synthetic implementation of the harmonic balance method, the Newton Raphson method, the 

Floquet theory, and the Discrete Fourier transform is employed in this thesis. Similar to the 

traditional harmonic balance method, the coefficients of each harmonic term are still assumed 

to be constant and the steady state solutions’ stabilities and bifurcations are determined by the 

Floquet theory. As the system parameters change, last step’s solution of each harmonic term’s 

coefficient can be used as the initial guess of the current step’s calculation in the Newton 

Raphson estimation. However at bifurcation points, a new branch of solution occurs and a 
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proper initial guess of the Fourier coefficients of the new solution is critical for the harmonic 

balance method to successfully trace down the new branch of periodic motion. For example, at 

the Hopf bifurcation point the period-1 solution lose stability at the same time the period-2 

solution is generated. Capturing this new generated period-2 solution is not trivial, and an 

arbitrary initial guess of the Fourier coefficients typically won’t converge to the stable period-

2 solution. In order to obtain an accurate enough initial guess of the Fourier coefficients of the 

new generated solution, Discrete Fourier Transform (DFT) is employed to estimate the Fourier 

coefficients of the new solution. The implementation process is described as the following. 

Analytical Periodic Solutions 

The periodic solution of Eq.(2.22) can be written in Fourier series of the form,  

 
1

0 / /

12

( )
sin( Ω ) cos( Ω ),

( )
m i m

i

i

q t i i
t t

q t m m





 
   

 
b a b   (3.1) 

where, 
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[ , ] .
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


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b
  (3.2) 

In Eq.(3.1), m is a integer. For fundamental period-1 motion, m equals 1. For period-2 

motion or period-4 motion, m equals 2 or 4, respectively.  

Eqs.(3.3) - (3.4) define each harmonic term’s amplitude and phase of the solutions of the 

bending and axial mode, 

 
/ ,12 2

/ ,1 / ,1 / ,1 / ,1

/ ,1

, arctan ,
i m

i m i m i m i m

i m

a
A a b

b
     (3.3) 
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A a b

b
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Stability of Periodic Solutions 

To obtain the stability of the periodic solutions, the Floquet multiplier is calculated. The 

multipliers are the functions of system parameters as presented in the work of Ajjarapu et.al 

(1992). When system parameters vary, some of the multipliers may cross the unit circle on the 

complex plane. The multiplier crossing the unit circle on the complex plane is called the critical 

multiplier. For a stable periodic motion, all multipliers are inside the unit circle, as the system 

parameter changes one multiplier may cross the unit circle and the stable periodic motion loses 

its stability. 

There are three ways for a stable periodic solution to lose stability as showed in Fig.2, which 

associate with three types of critical multipliers.  

 

                                       (a)                             (b)                             (c) 

Fig.2 Three ways of losing stability. 

 

A critical multiplier may go outside the unit circle along the positive real axis as showed in 

Fig.2 (a), which means turning points of the periodic orbit or a saddle node bifurcation occurs. 
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If the multiplier goes outside the unit circle along the negative real axis as showed in Fig.2 (b), 

period doubling or Hopf bifurcation occurs. If a pair of complex conjugate multipliers crosses 

the units circle with a non-zero imaginary part as showed in Fig.2 (c), then a secondary Hopf 

bifurcation or generalized Hopf bifurcation occurs. 

The continuation calculation of periodic solution with parameter dependence is applied in 

the thesis. Once a periodic solution corresponding a set of specific system parameters * *

0, , 

and *

1  is obtained, the Floquet theory is used to detect any bifurcations. Suppose one of the 

active parameters, , is changed with an increment , the initial guess of the new periodic 

solution or the predictor will be estimated through different ways based on the bifurcation 

detection results:  

(1) If the last step’s periodic solution is not a bifurcation point, the predictor is given by the 

tangential continuation method, then applying the Gauss Newton method as a corrector to 

calculate the final solution;  

(2) If the last step’s solution is a saddle node or turning point bifurcation, the predictor is 

obtained by flipping the tangential guess about the radius of curvature at the turning point, and 

then obtain the final solution via the Gauss Newton calculation;  

(3) If the last step’s solution is a Hopf bifurcation point, first obtain the unstable period-1 

solution as case (1). Obtain the initial condition of the unstable period-1 solution through 

harmonic balance reconstruction, time integral the original dynamic system with the initial 

condition, and achieve a steady state orbit.  

The predictor of the newly generated stable period-2 solution can be estimated by applying 

DFT to the steady state orbit. Then the period-2 solution can be found by applying the Gauss 
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Newton method. During Fourier transformation, aliasing and leakage can corrupt the DFT 

values.  

 

 

 

 

 

 

 

Fig. 3 The high order harmonic balance, Floquet theory, and Discrete Fourier Transform 

implementation flow chart. 

 

 

     To eliminate aliasing and leakage, the sampling data is synchronized and also choose the 

sampling frequency is chosen to be larger than twice of the frequency of the period-2 solution. 

The predicted Fourier coefficients of the period-2 solutions, which are solved by DFT is given  

in Eq. (3.5), where vector T

1 2[ ( ), ( )] ,r r rq t q tq 1,J    denotes the imaginary part of a 

complex number and   denotes the real part.   

The implement flow chart of the described procedure is given in Fig.3. 
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Bifurcation of Periodic Solutions 

The above procedure will be applied to analyze system(2.22), and the following beam 

properties are considered 

            3 2 9 469GMa, 2712kg/m , 0.0002m ,  2.5 10 m ,  1.5mE A J L         (3.6) 

The Fourier series expression from Eq.(3.1). In nonlinear system need infinite terms to 

obtain the exact solution of  the periodic motion. However, it is impossible for practice. Thus, 

the truncated Fourier series solutions will be used to give an approximate solution that can be 

close to the exact solution.  

To achieve an accurate prediction of periodic motions, the number of harmonic terms 

retained in the analytical solution is determined based on the steady state solutions’ convergence 

analysis. The steady state solution’s convergence behavior is monitored by the following 

average norm, 

 
0

1
( ) , 1,2.

T

i iq q t dt i
T

    (3.7) 

A solution with hN harmonic terms is considered to be accurate if the average norms converge 

to the targeted precision. Based on the convergence criteria in Eq.(3.7), in this thesis, 32 
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harmonic terms of the Fourier series expansion are retained to obtain an accurate period-1 

solutions and 64 harmonic terms are used to calculate period-2 solutions.  

The analytical solutions of each harmonic term’s amplitude and phase for period-1 motions, 

period-2 motions, and period-4 motions are presented in Fig.4 to Fig.12, as the external 

excitation frequency near the natural frequency of the first bending mode.  

The constant term amplitude 
0,1A  of the bending mode versus excitation frequency is plotted 

in Fig.4. From Fig.4, we can see that the periodic solutions clearly have a lower branch and an 

upper branch. From now on, we will separate all the periodic solutions into lower branch 

periodic solutions and upper branch periodic solutions. The upper branch is a loop which starts at 

Saddle-node 1

5SN  and ends at 1

8SN . 

Fig.5 presents the constant coefficient 
0,2A versus frequency of the axial mode for the lower 

branch and Fig.6 presents for the upper branch.  

The solid and dashed lines are curves representing the stable and unstable periodic solutions, 

respectively. On the diagrams, the acronyms SN and HB represent the Saddle-node and Hopf 

bifurcations respectively. Each SN and HB acronym has superscript and subscript, the 

superscripts 1, 2, and 4 represent bifurcations occurred on period-1, period-2, and period-4 

motions, respectively. The subscript represents the order of the bifurcations. The notation “P-

1”, “P-2” and “P-4” represent period-1, period-2 and period-4 motions, respectively.  

For period-1 motion, the Hopf bifurcation points are noted by stars. For period-2 motion, 

the Hopf bifurcation points are noted by triangles. The dark solid and dark dashed curves 

represent the stable and unstable period-2 solutions, respectively. In terms of period-4 solution, 

which are emanated through the Hopf bifurcation points of period-2, 128 harmonic terms are 
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retained in the analytical solutions. Similarly, solid double dark line and dashed double dark 

line represent stable and unstable period-4 solutions, respectively. Hopf bifurcation also 

presents in the period-4 solution, which are denoted by diamonds. We expect that at these Hopf 

bifurcation points of the period-4 solution, a stable period-8 solution will be generated. To 

present a clearer figure, the period-8 solutions didn’t show in this thesis.  

In the Fig.7, the fractional harmonic terms’ amplitudes are plotted and the corresponding 

Hopf bifurcations are labeled. Fig.7 (a) & (b) are the amplitudes of the 1/4 harmonic term, 

which only exist in the period-4 motion. Fig.7 (a) are the amplitudes of the period-4 solutions 

of the bending mode, while Fig.7 (b) are the amplitudes of the period-4 solutions of the axial 

mode. Fig.7 (c) & (d) are the amplitudes of the 1/2 harmonic terms, which exist in both period-

2 and period-4 solutions, and Fig.7 (c) is for the bending mode and Fig.7 (d) is for the axial 

mode. Fig.7 (e) & (f) are the amplitudes of the 3/4 harmonic term, which only exist in the 

period-4 motion, again Fig.7 (e) corresponds to the bending mode and Fig.7 (f) corresponds to 

the axial mode.    

In the Fig.8 (a), the lower branch of the first harmonic term’s amplitudes of the bending 

mode is represented. Fig.8 (b), (c) and (d) are the partially zoom in of Fig.8 (a).  Fig.9 (a) is 

the upper branch of the first harmonic terms’ amplitudes of the bending mode, and Fig.9 (b), 

(c) and (d) are the partially zoom in of Fig.9 (a).  

In the Fig.10 (a), the lower branch of the first harmonic term’s amplitudes of the axial mode 

is represented. Fig.10 (b), (c) and (d) are the partially zoom in of Fig.10 (a).  Fig.11 (a) is the  

upper branch of the first harmonic terms’ amplitudes of the bending mode, and Fig.11 (b), (c) 

and (d) are the partially zoom in of Fig.11(a).  

The bifurcation scenario is listed in detail in Tab. 1.  
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Branches Solution  Bifurcation  Ω value Bifurcation Description 

Lower 

Branch 

Period-1 

1

1SN  0.6865 Between these two SN points, 1 unstable period-1 

solution coexists with 2 stable period-1 solutions.  

Fig.4 (b); Fig.5 (a). 
1

2SN  0.6131 

1

1HB  0.6759 Between these two HB points, period-1 solution 

loses stability and a stable period-2 solution is 

generated. Fig.4 (a); Fig.5 (c); Fig.5 (d). 
1

2HB  0.8640 

1

3SN  0.9641 Between these two SN points, 3 period-1 solutions 

coexist and the middle one is unstable.  

Fig.4 (a); Fig.5 (a). 
1

4SN  0.9205 

1

3HB  0.9453 Between these two HB points, period-1 solution 

loses stability and a stable period-2 solution is 

generated. Fig.4 (c); Fig.5 (b). 
1

4HB  1.0055 

Period-2 

2

1HB  0.6860 Between these two HB points, period-2 solution 

loses stability and a stable period-4 solution is 

generated. Fig.4 (e); Fig.5 (e); Fig.5 (f). 
2

2HB  0.8188 

Period-4 

4

1HB  0.7392 
Between these two HB points, period-4 solution 

loses stability. A stable period-8 solution is 

expected, which is not shown in the figure. Fig.4 

(e); Fig.5 (e); Fig.5 (f). 
4

2HB  0.7990 

Upper  

Branch 

Period-1 

1

5SN  1.0701 Between these two SN points, 2 period-1 solution 

coexists and one is unstable. 

Fig.4 (a); Fig.5 (a). 
1

8SN  0.6653 

1

5HB  0.9998 Between these two HB points, period-1 solution 

loses stability and a stable period-2 solution is 

generated. Fig.4 (d); Fig.5 (b). 
1

6HB  0.9510 

1

6SN  0.9218 Between these two SN points, 3 period-1 solutions 

coexist and the middle one isunstable.  

Fig.4 (a); Fig.6 (a). 
1

7SN  0.9639 

1

7HB  0.8601 Between these two HB points, period-1 solution 

loses stability and a stable period-2 solution is 

generated. Fig.4 (a); Fig.6 (c); Fig.6 (d). 
1

8HB  0.6856 

Period-2 

2

3HB  0.8051 Between these two HB points, period-2 solution 

loses stability and a stable period-4 solution is 

generated. Fig.4 (f); Fig.6 (e); Fig.6 (f). 
2

4HB  0.6957 

Period-4 

4

3HB  0.7287 Between these two HB points, period-4 solution 

loses stability. A stable period-8 solution is 

expected, which is not shown in the figure.  

Fig.4 (f); Fig.6 (e); Fig.6 (f). 
4

4HB  0.7058 

Tab.1 Bifurcation scenario.  
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Figs.12 are the phase plots of the first harmonic term for the bending mode. Figs.12 (b) -

(h) are the partially zoom in of Fig.12 (a). Figs.13 are the first harmonic term’s phase plots for 

the axial mode, and Figs.13 (b) - (f) are the partially zoom in of Fig.12 (a). 
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(c)  
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(e)  

(f)  

 

Fig.4 Constant term’s amplitude 
0,1A of the bending mode: (b), (c) and (e) are the partially 

zoom in on the lower branch of (a). (d) and (f) are the partially zoom in on the upper branch of 

(a). (a) to (d) represent for period-1 and period-2. (e) to (f) are for period-1, period-2 and 

period-4. ( 69GMaE  , 
32712kg/m , 

20.0002m ,A -9 42.5 10J m  , 1.5mL  ). 
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 (e)  

(f)  

Fig.5 Constant term’s amplitude
0,2A of the axial mode for the lower branch: (b) to (f) are the 

partially zoom in of (a). (a) to (d) represent for period-1 and period-2. (e) to (f) are for period-

1, period-2 and period-4.  ( 69GMaE  , 
32712kg/m , 

20.0002m ,A 9 42.5 10 mJ   ,

1.5mL  ). 
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(e)  

(f)  

Fig.6 Constant term’s amplitude
0,2A of the axial mode for the upper branch: (b) to (f) are the 

partially zoom in of (a). (a) to (d) represent for period-1 and period-2. (e) to (f) are for period-

1, period-2 and period-4.  ( 69GMaE  , 
32712kg/m , 

20.0002m ,A 9 42.5 10 mJ   ,

1.5mL  ). 
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(e)  

(f)  

Fig.7 Fraction terms’ amplitude for both bending and axial modes: (a), (c) and (e) are harmonic 

amplitude of bending mode
1/4,1A , 

1/2,1A , 
3/4,1A ; (b), (d) and (f) are harmonic amplitude of axial 

mode
1/4,2A ,

1/2,2A ,
3/4,2A . ( 69GMaE  , 

32712kg/m , 
20.0002m ,A 9 42.5 10 mJ   ,

1.5mL  ). 
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(c)  

(d)  

Fig.8 First Harmonic term’s amplitude 
1,1A  of the bending mode for the lower branch: (b), (c), 

and (d) are the partially zoom in of (a). (a) and (b) represent for period-1 and period-2. (c) and 

(f) present for period-1, period-2 and period-4. ( 69GMaE  , 
32712kg/m , 

20.0002m ,A
-9 42.5 10J m  , 1.5mL  ). 
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(c)  

(d)  

Fig.9 First Harmonic term’s amplitude 
1,1A  of the bending mode for the upper branch: (b), (c), 

and (d) are the partially zoom in of (a). (a) and (b) represent for period-1 and period-2. (c) and 

(f) present for period-1, period-2 and period-4. ( 69GMaE  , 
32712kg/m , 

20.0002m ,A
-9 42.5 10J m  , 1.5mL  ). 
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(c)  

(d)  

Fig.10 First Harmonic term’s amplitude 
1,2A  of the axial mode for the lower branch: (b), (c), 

and (d) are the partially zoom in of (a). (a) and (b) represent for period-1 and period-2. (c) and 

(f) present for period-1, period-2 and period-4. ( 69GMaE  , 
32712kg/m , 

20.0002m ,A
-9 42.5 10J m  , 1.5mL  ). 
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(c)   

(d)  

Fig.11 First Harmonic term’s amplitude 
1,2A  of the axial mode for the upper branch: (b), (c), 

and (d) are the partially zoom in of (a). (a) and (b) represent for period-1 and period-2. (c) and 

(f) present for period-1, period-2 and period-4. ( 69GMaE  , 
32712kg/m , 

20.0002m ,A
9 42.5 10 mJ   , 1.5mL  ). 
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(g)  

(h)  

Fig.12 First Harmonic term’s phase 
1,1 of the bending mode: (b) - (h) are the partially zoom 

in on (a). (c) to (f) represent for period-1 and period-2. (b), (g) and (h) present for period-1, 

period-2 and period-4. ( 69GMaE  , 
32712kg/m , 

20.0002m ,A 9 42.5 10 mJ   ,

1.5mL  ). 
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(e)  

(f)  

Fig.13 First Harmonic term’s phase 
1,2 of the axial mode: (b) - (h) are the partially zoom in 

on (a). (c) to (f) represent for period-1 and period-2. (b), (g) and (h) present for period-1, 

period-2 and period-4. ( 69GMaE  , 
32712kg/m , 

20.0002m ,A -9 42.5 10J m  ,

1.5mL  ). 
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CHAPTER IV 

COMPARISION OF NUMERICAL AND ANALYTICAL SOLUTIONS 

In this section, the analytical solutions for period-1, period-2 and period-4 solutions are 

compared with the numerical integration results. The initial conditions for numerical integration 

are obtained from the analytical solutions. 

In these following comparison figures, ‘o’ always denotes analytical solutions of period-1 

motions no matter the solutions are stable or unstable, ‘ ’ represents analytical solutions of 

period-2 motions no matter the solutions are stable or unstable. Solid line is the 1st period of 

numerical simulation and dash dot line is the 1000th period of the numerical simulation. 

From Fig.4 (a), we can see that the upper branch, which is a loop, has one lower unstable 

period-1 solution and the other period-1 solution changing its stability due to Hopf bifurcations. 

While for the lower branch, it has a period-1 solution varying its stability at Hopf bifurcation 

points. From Tab.1, we check the Hopf bifurcation points 1

7HB  on the upper branch and 1

2HB  

on the lower branch, and it shows that 1

7HB  and 1

2HB  occur at 0.8601 and 0.8640, respectively. 

Therefore, at 0.87 , one unstable period-1 solution from upper branch and two stable 

period-1 solutions from both upper and lower branches coexist. The time response and the 

phase portraits of the two stable period-1 solutions from the lower and upper branches are 

illustrated in the Fig.14 and Fig.15, respectively.  

For the lower branch stable period-1 solution which is showed in Fig.14, its initial 

conditions ( 0 0.0,t  10 3.1265e-3,q  10 5.8537e-2,q   20 -6.7131e-6,q   2 2.8889e-4q   ) is 

evaluated based on the analytical results of Eq. (3.1). Let the Runge-Kutta numerical 
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integration start from the above initial condition, the numerical solution and the analytical 

solution are compared in Figs.14 (a) - (c).  

In the time response plot Fig.14 (a), the first several periods and several periods after 1000th 

periods are presented. Solid lines and circles denote numerical simulation and analytical 

solutions, respectively.  

In the phase portrait Fig.14 (b) & (c), only the 1st period and the 1000th period are given, 

the 1st period’s numerical simulation is plotted by solid curves and the 1000th period numerical 

simulation is presented by dash dot lines.  

From the figures we can see that the 1000th period numerical trajectory is on top of the first 

period, which means this solution is stable. The match of the circles with solid and dash dot 

lines means that the analytical solution is accurate.  
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(b)  

(c)   

Fig.14 Comparison of analytical and numerical solutions of the stable period-1 motion from 

upper branch: (at 0.87, initial condition: 0 0.0,t   10 3.1265e-3,q   10 5.8537e-2,q  

20 -6.7131e-6,q   20 2.8889e-4q   ). 'o '  denotes analytical period-1 solutions; solid line is the 

1st period of numerical simulations; dash dot line represents the 1000th period of numerical 

simulations. 
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Similarly, the upper branch period-1 solution at 0.87 is also stable and its initial 

condition is ( 0 0.0,t  10 7.8719e-3,q   10 4.8947e-2,q  20 3.1443e-5,q  20 5.1334e-4q  ). 

Fig.15 (a) - (c) illustrate the comparison between the numerical and the analytical solutions. 

In the time response plot Fig.15 (a), the first several periods and several periods after 1000th 

periods are presented. Solid lines denote numerical simulation and circles denote analytical 

solutions.  

In the phase portrait Fig.15 (b) & (c), only the 1st period and the 1000th period are given, 

the 1st period’s numerical simulation is plotted by solid curves and the 1000th period numerical 

simulation is presented by dash dot lines. The 1000th period numerical trajectory is on top of 

the first period, which means this solution is stable. The match of the circles with solid and 

dash dot lines means that the analytical solution is accurate.  
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(b)  

(c)  

Fig.15 Comparison of analytical and numerical solutions of the stable period-1 motion from 

lower branch (at 0.87, initial condition: 0 0.0,t   10 7.8719e-3,q   10 4.8947e-2,q 

20 3.1443e-5,q  20 5.1334e-4q  ). 'o '  denotes analytical period-1 solutions; solid line is the 1st 

period of numerical simulations; dash dot line represents the 1000th period of numerical 

simulations. 
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Fig.16 (a) - (c) are the time response and the phase portrait of the unstable period-1 motion 

on the upper branch at 0.87, The initial condition of this unstable periodic solution 

( 0 0.0,t  10 5.0526e-3,q  10 1.4767e-2,q   20 4.5280e-6,q  20 1.3257e-4q   ) is evaluated 

by Eq.(2.22).  

In the time response plot, the first several periods and several periods after 1000th periods 

are presented. Solid lines denote numerical simulation and circles denote analytical solutions. 

In phase portrait plot, solid lines and dash dot lines represent 1st period of numerical simulation, 

1000th period of numerical simulation. Circles are analytical solutions.  

As we can see during the first period on Fig.16 (b) & (c), the numerical simulation is on 

top of the unstable analytical period-1 solution, and as time progresses the numerical solution 

moves away from the unstable period-1 solution.  
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(b)  

(c)  

Fig.16 Comparison of analytical and numerical solutions of the unstable period-1 motion from 

upper branch: (at 0.87,  initial condition: 0 0.0,t  10 5.0526e-3,q  10 1.4767e-2,q  

20 4.5279e-6,q  20 1.3257e-4q   ). 'o 'denotes analytical period-1 solutions; solid line is the 

1st period of numerical simulations; dash dot line represents the 1000th period of numerical 

simulations. 
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From the Fig.16 (b) & (c) and Fig.10 (b) & (c), we can find the 1000th period of the 

numerical simulation is the same as the lower branch’s stable analytical solution. This shows 

that with initial conditions starting from the unstable period-1 solution of the upper branch, the 

numerical simulation will converge to the lower branch’s stable period-1 solution. The match 

of the 1st period’s numerical results with the unstable period-1 analytical prediction verifies the 

accuracy of our analytical solution. 

Fig.17 (a) - (c) illustrate the time response and phase portraits of another unstable period-

1 motion of the upper branch at 0.9757 . Its initial condition is given as 0 0.0,t   

10 5.6351e-3,q  10 1.7023e-2,q   20 9.1091e-6q  , 20 1.6987e-4q   . Similarly, solid lines, 

dash dot lines, and circles represent numerical simulation’s 1st period, 1000th period, and the 

analytical solution.  
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(b)  

(c)  

Fig.17 Comparison of analytical and numerical solutions of the unstable period-1 motion from 

upper branch: (at 0.9757 , initial condition: 0 0.0,t  10 5.6351e-3,q   10 1.7023e-2,q  

2 9.1091e-6,q  2 1.6987e-4q   ). 'o 'denotes analytical period-1 solutions; solid line is the 1st 

period of numerical simulations; dash dot line represents the 1000th period of numerical 

simulation. 
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During the first few periods, the numerical simulation is on top of the unstable analytical 

period-1 solution, as time progresses the numerical solution finally moves away from the 

unstable period-1 and converge to a stable period-2 solution on the lower branch.       

 From Fig.4 (a) and Tab.1, one can find that 0.9757 is between the occurrence of 

1

3HB 0.9453 and 1

4HB 1.0055 , and in the region (0.9453,1.0055) the only stable 

solution on the lower branch is the period-2 solution. We expect the unstable period-1 solution 

will converge to a stable period-2 solution. The analytical solution and numerical simulation 

comparison verifies our prediction. 

Fig.18 shows the comparison between the numerical solution and the analytical solution of 

a stable period-2 solution at 0.9537 on the lower branch. The initial conditions are 

0 0.0,t  10 6.3675e-3,q  10 5.7921e-1,q   20 1.4803e-5,q  20 5.4763e-3.q     
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(b)  

(c)  

Fig.18 Comparison of analytical and numerical solutions of the stable period-2 motion: (at

0.9537, initial condition: 0 0.0,t  10 6.3675e-3,q  10 5.7921e-1,q   20 1.4803e-5,q   

20 5.4763e-3q   ).  ' '  denotes analytical period-2 solutions; solid line is the 1st period of 

numerical simulations; dash dot line represents the 1000th period of numerical simulations. 
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In the time response plot Fig.18 (a), the first several periods and several periods after 1000th 

periods are presented by solid lines and dash dot lines. Triangles denote analytical solutions.  

In the phase portrait plot Fig.18 (b) & (c), the numerical simulations’ 1st period is plotted by 

solid curves and the 1000th period numerical simulation is presented by dash dot lines, and 

triangles represent analytical solutions.  

From the Fig.18 (a) - (c), we can see that the 1000th period trajectory is on top of the 1st 

period, which means the solution is stable. Also the triangles analytical solutions match very 

well with the numerical results.  
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(b)  

(c)  

 

Fig.19 Comparison of analytical and numerical solutions of the stable period-2 motion (at

0.835,  initial condition: ( 0 0.0,t  10 3.3052e-3,q  10 1.0629e-1,q   20 6.3562e-6,q  

20 5.2952e-4q   ). ' ' denotes analytical period-2 solutions; solid line is the 1st period of 

numerical simulations; dash dot line represents the 1000th period of numerical simulations. 
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Fig.19 is the comparison between the numerical solution and the analytical solution of one 

stable period-2 solutions at 0.835  on the lower branch.  The initial condition are 0 0.0,t 

10 3.3052e-3,q  10 1.0629e-1,q   20 6.3562e-6,q   20 5.2952e-4.q     

In the time response plot Fig.19 (a), the first several periods and several periods after 1000th 

periods are presented by solid lines and dash dot lines. Triangles denote analytical solutions.  

In the phase portrait plot Fig.19 (b) & (c), the numerical simulations’ 1st period is plotted by 

solid curves and the 1000th period numerical simulation is presented by dash dot lines, and 

triangles represent analytical solutions.  

From the Fig.19 (a) - (c), we can see that the 1000th period trajectory is on top of the 1st 

period, which means the solution is stable. Also the triangles analytical solutions match very 

well with the numerical results. 

Figs.20 (a) - (f) are the time response and phase portrait of an unstable period-2 motion. 

This initial condition which is given by Eq.(2.22) can be written as 0 0.0,t  10 4.1530e-3,q   

10 6.8194e-3,q  20 -1.5390e-6,q  20 2.6450e-5q  .  

The comparison of the first several periods’ numerical simulation and the analytical 

solution is illustrated in Fig.16. (a) -(c) and they match very well. Triangles and solid lines 

represent analytical solution and the 1st period of numerical simulation, respectively.  

As integration time progresses, the numerical solution drifts away from the unstable period-

2 solution and finally converges to a stable period-4 solution as showed in Fig.20  (d) - (f). The 

dash dot lines in Fig.20 (d) - (f) are the 1000th period of the numerical simulation, which are 

also the time response and phase portrait of the stable period-4 motion. 
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(c)   

(d)  
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(e)  

(f)  

Fig.20 Comparison of analytical and numerical solutions of the unstable period-2 motion: (at

0.7164, the initial condition: 0 0.0,t   10 4.1530e-3,q   10 6.8194e-3,q  20 -1.5390e-6,q 

20 2.6450e-5q  ). ' ' denotes unstable period-2 analytical solutions; solid line is the 1st period 

of numerical simulations; dash dot line represents the 1000th period of numerical simulations. 
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CHAPTER V 

CONCLUSION 

In this work, all the period-1, period-2 and period-4 motions of a rotating beam with 

variation rotating speed are studied at the principle resonance region.  

A two degree of freedom dynamic model of the rotating beam is obtained by the Galerkin 

method, in which the strong nonlinear geometric stiffening terms are retained. The amplitude 

versus frequency bifurcation diagram is presented.  

The saddle node bifurcations and Hopf bifurcations of the periodic motions are obtained 

by the combined implementation of the high order harmonic balance method, Floquet theory, 

and the Discrete Fourier Transform.  

First, a periodic solution is obtained by the high order harmonic balance method, and then 

its stability and the occurrence of bifurcations with the bifurcation category are determined by 

the Floquet multiplier. As the excitation frequency increases, numerical continuation method 

is employed to calculate the next periodic solution represented by the Fourier series. At the 

Hopf bifurcation point of a periodic solution, the initial predictor of the new generated periodic 

doubling motion is obtained by the discrete Fourier transform.  

The periodic solutions and their bifurcations obtained via the above described approach are 

verified by numerically integrating the original dynamic system. The Runge-Kutta algorithm 

is used in the numerical integration, and the initial conditions of all numerical integrations are 

predicted by the analytical harmonic balance approximation. The comparisons between 

analytical solutions and numerical integration results show exact match. 
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In the future, with more than one system parameters varying, the period-2 and period-4 

solutions’ parametric boundary will be calculated based on our method. These analysis results 

will help people to better understand the blade bending vibrations and the effects of the 

vibration on the structure failure factors. 
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